Kniga-Online.club
» » » » Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Читать бесплатно Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович. Жанр: Публицистика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Чтобы отличить число отъ слова, греки проводили обыкновенно надъ цифрами черту, такъ, напр., —ι—ε[4]=15,—π—χ—β=122. Для обозначенія тысячъ они пользовались опять 9-ю первыми знаками, но подъ ними проводили маленькую вертикальную черту, напримѣръ, |α=1000, |β=2000, |γ=3000, |—α—φ—ο—ε=1575, |—ε—τ—π=5380, |—θ—ω—μ—γ= 9843, |—γ—χ—ν—δ=3654.

Десятокъ тысячъ составляетъ новую употребительную едииицу счета — миріаду. Греки любили пользоваться миріадами и прииѣняли ихъ съ такою же охотой, cъ какой мы примѣняемъ тысячи и милліоны; можно сказать, что въ греческомъ счисленіи классъ состоялъ изъ 4 разрядовъ, а не изъ 3-хъ, какъ въ нашемъ, такъ что при выговариваніи большихъ чиселъ они прежде всего указывали миріады, а послѣ нихъ и тысячи и остальные всѣ разряды. Знакъ миріады былъ М или Мν. Двѣ миріады обозначались черезъ βM.

Миріада миріадъ, по нашему сто милліоновъ, обозначалась черезъ Мβ. Миріада въ кубѣ, иначе сказать трилліонъ, писалась Мγ. Отдѣльаыя же миріады раздѣлялись точками, поэтому: Мγ.ε|Mβ.ρι|Mα.|εσπ=5601052800000. Какъ видно, цифры здѣсь располагаются отъ лѣвой руки къ правой, но это было не всегда, и такой порядокъ не считался обязательнымъ: можно было писать отъ правой руки къ лѣвой; въ Сициліи и Малой Азіи даже и выговариваніе чиселъ происходило отъ низшаго разряда къ высшему, такъ что сперва произносились единицы, затѣмъ десятки, сотни, тысячи и высшіе разряды.

Буквы — цифры гораздо менѣе удобны, чѣмъ выше упомянутые знаки Геродіана. Внося немало сбивчивости при письмѣ, онѣ, кромѣ того, мѣшаютъ производству дѣйствій, такъ какъ при нихъ надо въ отдѣльности учиться, какъ вычислять съ простыми единицами, въ отдѣльности съ десятками и съ прочими разрядами: нѣтъ аналогіи и мало сходства въ вычисленіяхъ съ отдѣльными разрядами.

Евреи. Они употребляли вмѣсто цифръ буквы алфавита. Очевидно, они это сдѣлали подъ вліяніемъ гречесжихъ ученыхъ, жившихъ въ Александріи, въ Египтѣ. Точно сказать нельзя, когда именно евреи перешли къ такой системѣ цифръ; но, вѣроятно, это случилось незадолго до Р. X., по крайней мѣрѣ, на еврейскихъ монетахъ такія цифры встрѣчаются не ранѣе 137 г. до Р. X.

Числа отъ 1 до 9 выражались у евреевъ первыми 9-ю буквами алфавита, круглые десятки (20, 30…. 90) девятью слѣдующими буквами, затѣмъ круглыя сотни— 100, 200, 300, 400 выражались четырьмя остальными, потому что въ еврейскомъ алфавитѣ было всего навсего 22 буквы. И вотъ для остальныхъ круглыхъ сотенъ буквъ недоставало. Первоначально этотъ недостатокъ пополнялся тѣмъ, что вмѣсто 500 писали 400+100, 600=400+200 и т. д. Потомъ догадались отсѣчь концы у 5 слишкомъ длинныхъ буквъ (Капхъ, Мемъ, Нунъ, Пхе, Тцаде) и этими концами начали обозначать остальныя сотни. Еврейскія цифры см. въ приложеніи 8-мъ, въ концѣ книги.

Тысячи обозначались опять при помощи 9 первыхъ буквъ, но только надъ ними ставились точки, чтобъ не смѣшать съ простыми единицами. Чтобъ отличить числа отъ словъ, употребляли въ первомъ случаѣ особый знакъ. Цифры писались отъ правой руки къ лѣвой, въ порядкѣ уменьшающейся величины значеній; слѣдовательно, разряды низшіе писались влѣво, а не вправо, какъ пишутся у насъ. Впрочемъ, у всѣхъ народовъ такъ наз. семитическаго корня, т.-е. евреевъ, вавилонянъ, арабовъ, финикіянъ, эфіоповъ, ассиріянъ, письмо шло противоположно нашему, т.-е. отъ правой руки къ лѣвой.

Сирийцы. Ихъ цивилизація относится къ гораздо болѣе позднѣйшимъ временамъ, чѣмъ финикійская, халдейская, египетская и т. д. Ихъ можно бы назвать въ нѣкоторомъ родѣ преемниками финикіянъ. По крайней мѣрѣ, въ III в. по Р. X. мы встрѣчаемъ у сирійцевъ цифры, которыя очень похожи на тѣ, какія были въ Финикіи за много лѣтъ до Р. X. Позднѣе эти цифры быди отброшены, и, начиная приблизительно съ VII в. по Р. X., сирійская литература содержитъ буквы алфавита вмѣсто цифръ. Здѣсь мы находимъ то же самое, что въ Греціи и у евреевъ. Сирійскій алфавитъ, какъ и еврейскій, содержитъ 22 буквы. Для выраженія простыхъ единицъ, круглыхъ десятковъ и сотенъ отъ 100 до 500, буквъ алфавита было достаточно, какъ видимъ мы и у евреевъ. 500, 600 и далѣе до 10001 сирійцы означали при помощи сложенія, такъ что 500=400+100, 600=400+200 и т. д. Круглыя тысячи они писали какъ простыя единицы, только внизу налѣво приписывали запятую. Значеніе десятковъ тысячъ давалось единицамъ и десяткамъ при помощи маленькой горизонтальной черточки, которою подчеркивались цифры. Значеніе милліона давалось 2-мя запятыми.

Славяне. Составитель славянскаго алфавита, св. Кириллъ, заимствовалъ систему цифръ цѣликомъ у грековъ. Какъ греки пользовались буквами своего алфавита, такъ и для славянъ была составленаі таблица, схожая даже до мелочей съ греческою. Напр., почему 2 обозначаетея по славянски черезъ вѣди, а не черезъ буки? Потому что въ греческомъ языкѣ нѣтъ отдѣльныхъ звуковъ «б» и «в», а есть для нихъ общая буква «вита» или «бета». Почему ѳита обозначаетъ девять, хотя ей мѣсто въ самомъ концѣ алфавита? Потому что въ греческомъ языкѣ ей соотвѣтствуетъ буква θ, которая и стоитъ здѣсь на своемъ мѣстѣ, а не въ концѣ алфавита. Червь, обозначающій 90, поставленъ вмѣсто коппы, такъ какъ по-гречески нѣтъ звука «ч» совсѣмъ, а по-славянски нѣтъ коппы. Вотъ рядъ славянскихъ цифръ:

Тысячи обозначаются тѣми же буквами, какими и единицы, но съ добавленіемъ значка, который ставится налѣво отъ цифръ, выражающихъ количество тысячъ. Вообще славянская система—полнѣйшая копія греческой: такъ же берутся буквы алфавита, похоже обозначаются тысячи, и даже есть наклонность къ счету миріадами, т. е. десятками тысячъ. Впрочемъ, большія числа въ старинныхъ рукописныхъ славянскихъ сборникахъ встрѣчаются не очень часто. Ниже, въ прилож. 9-мъ, приводимъ мы обозначенія большихъ количествъ: тьмы, легіона, леодра, врановъ. Эти изображенія встрѣчаются въ старинныхъ рукописяхъ грамматическихъ, но не ариѳметическихъ, такъ какъ въ ариѳметическихъ рукописяхъ 16–17 столѣтія предпочитаютъ пользоваться цифрами обыкновенными, которымъ мы даемъ названіе арабскихъ.

Римляне. Ихъ система цифръ не принадлежитъ къ числу удобныхъ и разработанныхъ. Римляне были слабы въ ариѳметикѣ, и даже до того слабы, что имъ никакъ не удалось освободиться отъ пережитковъ старой пятеричной системы счета, и только они одни остались при счетѣ пятками въ то время, какъ всѣ другіе народы, начавши, быть-можетъ, тоже со счета пятками, сумѣли выработать чистый счетъ десятками. Цифры у римлянъ смѣшанныя: однѣ изъ нихъ обязаны своимъ происхожденіемъ наглядности, а другія представляютъ собой буквы.

Римскія цифры таковы: I=1, V=5, X==10, L=50, C=100, D=500, М=1000. Изъ этихъ семи знаковъ легко можно составить обозначенія всѣхъ чиселъ. Тысяча иногда обозначалась не черезъ М, а черезъ (I), т. е. она обозначалась чертой среди 2 скобокъ. Согласно этому, и десятокъ тысячъ имѣлъ знакъ такой: ((I)), сто тысячъ (((I))), для милліоновъ брали ∞.

При помощи раздваиванія 3-хъ послѣднихъ знаковъ можно образовать 3 новыхъ цифры: І))=5000, І)))=50000, O | = 500000. Отсюда ясно видно, какъ получилось D для пятисотъ; это ничто иное, какъ тысяча (I), раздѣленная пополамъ, правая часть взята, а лѣвая откинута.

Значенія отдѣльныхъ знаковъ при письмѣ чаще всего складывались, напр., III=3, ХIII=13, MDCCCLXVI=1866. Но если высшій знакъ стоялъ правѣе низшаго, то это выражало отниманіе, такъ, напр., IX=9, XC=90. Вычитать обыкновенно можно было не больше одного знака, а прикладывать—не больше 3-хъ однородныхъ. Кромѣ того, прежде чѣмъ писать число, его разлагали на единицы, десятки, сотни и т. д., и чтобы написать хотя бы 990, писали сперва 900, затѣмъ уже 90, т.-е. CMXC, а не отнимали прямо отъ тысячи десятокъ. Бывали, впрочемъ, изрѣдка и исключенія: IIX=8, вмѣсто VIII; VIIII=9, вмѣсто IX; послѣдняя фигура (VIIII) была особенно употребительна на памятникахъ и плитахъ, потому что римляне любили точность, а между тѣмъ если подойти съ другой стороны, то IX покажется не 9-ю, а 11-ю (XI).

Перейти на страницу:

Беллюстин Всеволод Константинович читать все книги автора по порядку

Беллюстин Всеволод Константинович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Как постепенно дошли люди до настоящей арифметики [без таблиц] отзывы

Отзывы читателей о книге Как постепенно дошли люди до настоящей арифметики [без таблиц], автор: Беллюстин Всеволод Константинович. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*